Anti-aliasing for fused filament deposition

نویسندگان

  • Hai-Chuan Song
  • Nicolas Ray
  • Dmitry Sokolov
  • Sylvain Lefebvre
چکیده

Layered manufacturing inherently suffers from staircase defects along surfaces that are gently slopped with respect to the build direction. Reducing the slice thickness improves the situation but never resolves it completely as flat layers remain a poor approximation of the true surface in these regions. In addition, reducing the slice thickness largely increases the print time. In this work we focus on a simple yet effective technique to improve the print accuracy for layered manufacturing by filament deposition. Our method works with standard three-axis 3D filament printers (e.g. the typical, widely available 3D printers), using standard extrusion nozzles. It better reproduces the geometry of sloped surfaces without increasing the print time. Our key idea is to perform a local anti-aliasing, working at a sub-layer accuracy to produce slightly curved deposition paths and reduce approximation errors. This is inspired by Computer Graphics anti-aliasing techniques which consider sub-pixel precision to treat aliasing effects. We show that the necessary deviation in height compared to standard slicing is bounded by half the layer thickness. Therefore, the height changes remain small and plastic deposition remains reliable. We further split and order paths to minimize defects due to the extruder nozzle shape, avoiding any change to the existing hardware. We apply and analyze our approach on 3D printed examples, showing that our technique greatly improves surface accuracy and silhouette quality while keeping the print time nearly identical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs

Three-dimensional printing/additive manufacturing (3DP/AM) for tissue engineering and regenerative medicine (TE/RM) applications is a multifaceted research area encompassing biology, material science, engineering, and the clinical sciences. Although being quite mature as a research area, only a handful of clinical cases have been reported and even fewer commercial products have made it to the m...

متن کامل

Hot-wire deposition of amorphous and microcrystalline silicon using different gas excitations by a coiled filament

Microcrystalline silicon (mc-Si:H) and amorphous silicon (a-Si:H) films were deposited using a hot-wire CVD (HWCVD) system that employs a coiled filament. Process gasses, H and Si H , could be directed into the deposition chamber via different 2 2 6 gas inlets, either through a coiled filament for efficient dissociation or into the chamber away from the filament, but near the substrates. We fou...

متن کامل

Extruder path generation for Curved Layer Fused Deposition Modeling

Extruder path generation for a new rapid prototyping technique named “Curved Layer Fused Deposition Modeling” (CLFDM) has been presented. The prototyping technique employs deposition of material in curved layers in contrast to flat layers as in Fused Deposition Modeling (FDM). The proposed method would be particularly advantageous over FDM in the manufacturing of thin, curved parts (shells) by ...

متن کامل

Non-isotropic Material Distribution Topology Optimization for Fused Deposition Modeling Products

Mechanical properties of products produced with the Fused Deposition Modeling (FDM) process are known to be dependent on bead direction, especially when short fiber reinforcement is added to the polymer filament feedstock. As a result, the structural performance of fiber-filled FDM parts is expected to be improved by simultaneously computing preferred deposition directions while optimizing the ...

متن کامل

Methods to Improve Surface Finish of Parts Produced by Fused Deposition Modeling

Fused deposition modeling (FDM) is one of the rapid prototyping technologies that can use plastic material, which can be effectively used for making patterns for investment casting. The surface finish of the investment casting depends upon the surface finish of the pattern. But the surface finish of the parts produced by using FDM is not very good as compared to wax patterns, which are conventi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2017